doris介绍
1.基本概念
1.1Doris(Palo) 简介
Doris 是一个 MPP 的在线 OLAP 系统,主要整合了 Google Mesa (数据模型),Apache Impala (MPP query engine) 和 ORCFile / Parquet (存储格式,编码和压缩) 的技术。
Doris 具有以下特点:
- 无外部系统依赖
- 高可靠,高可用,高可扩展
- 同时支持 高并发点查询和高吞吐的 Ad-hoc 查询
- 同时支持 批量导入和近实时 mini-batch 导入
- 兼容 MySQL 协议
- 支持 Rollup Table 和 Rollup Table 的智能查询路由
- 支持多表 Join
- 支持 Schema 在线变更
- 支持存储分级,旧的冷数据用 SATA,新的热数据用 SSD
Doris 的系统架构如下:
Doris 主要分为 FE 和 BE 两种角色,FE 主要负责查询的编译,分发和元数据管理(基于内存,类似 HDFS NN);BE 主要负责查询的执行和存储系统。
1.2Doris 数据模型
Doris 的数据模型主要分为 3 类:
- Aggregate
- Uniq
- Duplicate
Aggregate 模型(聚合模型)
Doris 的聚合模型主要用于固定模式的报表类查询场景,实现原理和Mesa 完全一致。
维度列作为 Key, 指标列作为 Value,存储时会按照 Key 列进行排序,相同 Key 的 Value 会按照聚合函数 F(Sum, Min, Max, Replace,HLL)进行聚合。
示例 1:导入数据聚合
假设业务有如下数据表模式:
ColumnName | Type | AggregationType | Comment |
---|---|---|---|
user_id | LARGEINT | 用户 id | |
date | DATE | 数据灌入日期 | |
city | VARCHAR(20) | 用户所在城市 | |
age | SMALLINT | 用户年龄 | |
sex | TINYINT | 用户性别 | |
last_visit_date | DATETIME | REPLACE | 用户最后一次访问时间 |
cost | BIGINT | SUM | 用户总消费 |
max_dwell_time | INT | MAX | 用户最大停留时间 |
min_dwell_time | INT | MIN | 用户最小停留时间 |
如果转换成建表语句则如下(省略建表语句中的 Partition 和 Distribution 信息)
1 |
|
可以看到,这是一个典型的用户信息和访问行为的事实表。
在一般星型模型中,用户信息和访问行为一般分别存放在维度表和事实表中。这里我们为了更加方便的解释 Doris 的数据模型,将两部分信息统一存放在一张表中。
表中的列按照是否设置了 AggregationType,分为 Key (维度列) 和 Value(指标列)。没有设置 AggregationType 的,如 user_id、date、age … 等称为 Key,而设置了 AggregationType 的称为 Value。
当我们导入数据时,对于 Key 列相同的行和聚合成一行,而 Value 列会按照设置的 AggregationType 进行聚合。 AggregationType 目前有以下四种聚合方式:
- SUM:求和,多行的 Value 进行累加。
- REPLACE:替代,下一批数据中的 Value 会替换之前导入过的行中的 Value。
- MAX:保留最大值。
- MIN:保留最小值。
假设我们有以下导入数据(原始数据):
user_id | date | city | age | sex | last_visit_date | cost | max_dwell_time | min_dwell_time |
---|---|---|---|---|---|---|---|---|
10000 | 2017-10-01 | 北京 | 20 | 0 | 2017-10-01 06:00:00 | 20 | 10 | 10 |
10000 | 2017-10-01 | 北京 | 20 | 0 | 2017-10-01 07:00:00 | 15 | 2 | 2 |
10001 | 2017-10-01 | 北京 | 30 | 1 | 2017-10-01 17:05:45 | 2 | 22 | 22 |
10002 | 2017-10-02 | 上海 | 20 | 1 | 2017-10-02 12:59:12 | 200 | 5 | 5 |
10003 | 2017-10-02 | 广州 | 32 | 0 | 2017-10-02 11:20:00 | 30 | 11 | 11 |
10004 | 2017-10-01 | 深圳 | 35 | 0 | 2017-10-01 10:00:15 | 100 | 3 | 3 |
10004 | 2017-10-03 | 深圳 | 35 | 0 | 2017-10-03 10:20:22 | 11 | 6 | 6 |
我们假设这是一张记录用户访问某商品页面行为的表。我们以第一行数据为例,解释如下:
数据 | 说明 |
---|---|
10000 | 用户 id,每个用户唯一识别 id |
2017-10-01 | 数据入库时间,精确到日期 |
北京 | 用户所在城市 |
20 | 用户年龄 |
0 | 性别男(1 代表女性) |
2017-10-01 06:00:00 | 用户本次访问该页面的时间,精确到秒 |
20 | 用户本次访问产生的消费 |
10 | 用户本次访问,驻留该页面的时间 |
10 | 用户本次访问,驻留该页面的时间(冗余) |
那么当这批数据正确导入到 Doris 中后,Doris 中最终存储如下:
user_id | date | city | age | sex | last_visit_date | cost | max_dwell_time | min_dwell_time |
---|---|---|---|---|---|---|---|---|
10000 | 2017-10-01 | 北京 | 20 | 0 | 2017-10-01 07:00:00 | 35 | 10 | 2 |
10001 | 2017-10-01 | 北京 | 30 | 1 | 2017-10-01 17:05:45 | 2 | 22 | 22 |
10002 | 2017-10-02 | 上海 | 20 | 1 | 2017-10-02 12:59:12 | 200 | 5 | 5 |
10003 | 2017-10-02 | 广州 | 32 | 0 | 2017-10-02 11:20:00 | 30 | 11 | 11 |
10004 | 2017-10-01 | 深圳 | 35 | 0 | 2017-10-01 10:00:15 | 100 | 3 | 3 |
10004 | 2017-10-03 | 深圳 | 35 | 0 | 2017-10-03 10:20:22 | 11 | 6 | 6 |
可以看到,用户 10000 只剩下了一行聚合后的数据。而其余用户的数据和原始数据保持一致。这里先解释下用户 10000 聚合后的数据:
前 5 列没有变化,从第 6 列 last_visit_date 开始:
- 2017-10-01 07:00:00:因为 last_visit_date 列的聚合方式为 REPLACE,所以 2017-10-01 07:00:00 替换了 2017-10-01 06:00:00 保存了下来。
注:在同一个导入批次中的数据,对于 REPLACE 这种聚合方式,替换顺序不做保证。如在这个例子中,最终保存下来的,也有可能是 2017-10-01 06:00:00。而对于不同导入批次中的数据,可以保证,后一批次的数据会替换前一批次。
- 35:因为 cost 列的聚合类型为 SUM,所以由 20 + 15 累加获得 35。
- 10:因为 max_dwell_time 列的聚合类型为 MAX,所以 10 和 2 取最大值,获得 10。
- 2:因为 min_dwell_time 列的聚合类型为 MIN,所以 10 和 2 取最小值,获得 2。
经过聚合,Doris 中最终只会存储聚合后的数据。换句话说,即明细数据会丢失,用户不能够再查询到聚合前的明细数据了。
Uniq 模型(唯一主键)
在某些多维分析场景下,用户更关注的是如何保证 Key 的唯一性,即如何获得 Primary Key 唯一性约束。因此,我们引入了 Uniq 的数据模型。该模型本质上是聚合模型的一个特例,也是一种简化的表结构表示方式。我们举例说明。
ColumnName | Type | IsKey | Comment |
---|---|---|---|
user_id | BIGINT | Yes | 用户 id |
username | VARCHAR(50) | Yes | 用户昵称 |
city | VARCHAR(20) | No | 用户所在城市 |
age | SMALLINT | No | 用户年龄 |
sex | TINYINT | No | 用户性别 |
phone | LARGEINT | No | 用户电话 |
address | VARCHAR(500) | No | 用户住址 |
register_time | DATETIME | No | 用户注册时间 |
这是一个典型的用户基础信息表。这类数据没有聚合需求,只需保证主键唯一性。(这里的主键为 user_id + username)。那么我们的建表语句如下:
1 | CREATE TABLE IF NOT EXISTS example_db.expamle_tbl( |
而这个表结构,完全同等于以下使用聚合模型描述的表结构:
ColumnName | Type | AggregationType | Comment |
---|---|---|---|
user_id | BIGINT | 用户 id | |
username | VARCHAR(50) | 用户昵称 | |
city | VARCHAR(20) | REPLACE | 用户所在城市 |
age | SMALLINT | REPLACE | 用户年龄 |
sex | TINYINT | REPLACE | 用户性别 |
phone | LARGEINT | REPLACE | 用户电话 |
address | VARCHAR(500) | REPLACE | 用户住址 |
register_time | DATETIME | REPLACE | 用户注册时间 |
及建表语句:
1 | CREATE TABLE IF NOT EXISTS example_db.expamle_tbl( |
即 Uniq 模型完全可以用聚合模型中的 REPLACE 方式替代。其内部的实现方式和数据存储方式也完全一样。这里不再继续举例说明。
Duplicate 模型(冗余模型)
由于聚合模型存在下面的缺陷,Doris 引入了非聚合模型。
- 必须区分维度列和指标列
- 维度列很多时,Sort 的成本很高。
- Count 成本很高,需要读取所有维度列(可以参考 Kylin 的解决方法进行优化)
非聚合模型主要用于Ad-hoc 查询,不会有任何聚合,不区分维度列和指标列,但是在建表时需要指定 Sort Columns,数据导入时会根据 Sort Columns 进行排序,查询时根据 Sort Column 过滤会比较高效。
ColumnName | Type | SortKey | Comment |
---|---|---|---|
timestamp | DATETIME | Yes | 日志时间 |
type | INT | Yes | 日志类型 |
error_code | INT | Yes | 错误码 |
error_msg | VARCHAR(1024) | No | 错误详细信息 |
op_id | BIGINT | No | 负责人 id |
op_time | DATETIME | No | 处理时间 |
建表语句如下:
1 | CREATE TABLE IF NOT EXISTS example_db.expamle_tbl |
ROLLUP
ROLLUP 在多维分析中是“上卷”的意思,即将数据按某种指定的粒度进行进一步聚合。
基本概念
在 Doris 中,我们将用户通过建表语句创建出来的表成为 Base 表(Base Table)。Base 表中保存着按用户建表语句指定的方式存储的基础数据。
在 Base 表(同一个分区内)之上,我们可以创建任意多个 ROLLUP 表。这些 ROLLUP 的数据是基于 Base 表产生的,并且在物理上是独立存储的。
ROLLUP 表的基本作用,在于在 Base 表的基础上,获得更粗粒度的聚合数据。
在 Kylin 中,我们把每一种维度组合称之为 Cuboid,在 Doris 中与之等价的概念是 RollUp 表。实际上,Kylin 的 Cuboid 和 Doris 的 RollUp 表都可以认为是一种 Materialized Views 或者 Index。
Doris 的 RollUp 表 和 Kylin 的 Cuboid 一样,在查询时不需要显示指定,系统内部会根据查询条件进行智能路由。下图是个 RollUp 表的示意。
Doris RollUp 表的路由规则如下:
- 选择包含所有查询列的 RollUp 表
- 按照过滤和排序的 column 筛选最符合的 RollUp 表
- 按照 Join 的 column 筛选最符合的 RollUp 表
- 行数最小的
- 列数最小的
Doris RollUp | Kylin Cuboid | |
---|---|---|
定义的成本 | 需要手动逐个定义 | 系统根据 Web 上维度,聚集组的设置自动定义出所有 Cuboid |
定义的灵活性 | 维度列和指标列可以自由选择 | 只可以选择维度列,每个 Cuboid 都必须包含所有指标列 |
计算方式 | 从原始数据直接生成每个 RollUp 表的数据 | 根据 Cuboid Tree 分层构建 Cuboid,每个 Cuboid 的输入是 Parent cuboid,不是原始数据。 |
物理存储 | 每个 RollUp 表是独立存储的 | 多个 Cuboid 会存储到 1 个 HFile 中(按照大小) |
查询路由 | 会根据过滤列,排序列,Join 列,行数,列数进行路由 | 仅会根据维度列进行路由 |
下面我们用示例详细说明在不同数据模型中的 ROLLUP 表及其作用。
示例 1:获得每个用户的总消费
接 Aggregate 模型小节的示例 2,Base 表结构如下:
ColumnName | Type | AggregationType | Comment |
---|---|---|---|
user_id | LARGEINT | 用户 id | |
date | DATE | 数据灌入日期 | |
timestamp | DATETIME | 数据灌入时间,精确到秒 | |
city | VARCHAR(20) | 用户所在城市 | |
age | SMALLINT | 用户年龄 | |
sex | TINYINT | 用户性别 | |
last_visit_date | DATETIME | REPLACE | 用户最后一次访问时间 |
cost | BIGINT | SUM | 用户总消费 |
max_dwell_time | INT | MAX | 用户最大停留时间 |
min_dwell_time | INT | MIN | 用户最小停留时间 |
存储的数据如下:
user_id | date | timestamp | city | age | sex | last_visit_date | cost | max_dwell_time | min_dwell_time |
---|---|---|---|---|---|---|---|---|---|
10000 | 2017-10-01 | 2017-10-01 08:00:05 | 北京 | 20 | 0 | 2017-10-01 06:00:00 | 20 | 10 | 10 |
10000 | 2017-10-01 | 2017-10-01 09:00:05 | 北京 | 20 | 0 | 2017-10-01 07:00:00 | 15 | 2 | 2 |
10001 | 2017-10-01 | 2017-10-01 18:12:10 | 北京 | 30 | 1 | 2017-10-01 17:05:45 | 2 | 22 | 22 |
10002 | 2017-10-02 | 2017-10-02 13:10:00 | 上海 | 20 | 1 | 2017-10-02 12:59:12 | 200 | 5 | 5 |
10003 | 2017-10-02 | 2017-10-02 13:15:00 | 广州 | 32 | 0 | 2017-10-02 11:20:00 | 30 | 11 | 11 |
10004 | 2017-10-01 | 2017-10-01 12:12:48 | 深圳 | 35 | 0 | 2017-10-01 10:00:15 | 100 | 3 | 3 |
10004 | 2017-10-03 | 2017-10-03 12:38:20 | 深圳 | 35 | 0 | 2017-10-03 10:20:22 | 11 | 6 | 6 |
在此基础上,我们创建一个 ROLLUP:
ColumnName |
---|
user_id |
cost |
该 ROLLUP 只包含两列:user_id 和 cost。则创建完成后,该 ROLLUP 中存储的数据如下:
user_id | cost |
---|---|
10000 | 35 |
10001 | 2 |
10002 | 200 |
10003 | 30 |
10004 | 111 |
可以看到,ROLLUP 中仅保留了每个 user_id,在 cost 列上的 SUM 的结果。那么当我们进行如下查询时:
SELECT user_id, sum(cost) FROM table GROUP BY user_id;
Doris 会自动命中这个 ROLLUP 表,从而只需扫描极少的数据量,即可完成这次聚合查询
多版本
为了获得更高的导入吞吐量,Doris 的数据更新是按照 batch 来更新的。为了在数据更新时不影响数据查询以及保证更新的原子性,Doris 采用了 MVCC 的方式,所以在数据更新时每个 batch 都需要指定一个 verison。
数据的版本化虽然可以解决读写冲突和更新的原子性,但是也带来了以下问题:
- 存储成本。 多版本意味着我们需要存储多份数据,但是由于聚合后的数据一般比较小,所以这个问题还好。
- 查询时延。 如果有很多版本,那么查询时需要遍历的版本数据就会很多,查询时延自然就会增大。
为了解决这两个问题,常见的思路就是及时删除不需要的、过期的数据,以及将小的文件 Merge 为大的文件。
如上图所示,Mesa 的 Merge 策略和 HBase 很像。
类似 HBase 的 minor compaction 和 major compaction,Mesa 中引入了cumulative compaction和base compaction的概念。
Mesa 中将包含了一定版本的数据称为deltas, 表示为[V1, V2],刚实时写入的小 deltas, 称之为singleton deltas,然后每到一定的版本数(图中是 10),就通过 cumulative compaction 将 10 个 singleton deltas 合并为 1 个 cumulative deltas,最终每天会通过 base compaction 将一定周期内所有的 deltas 都合并为base deltas。
所以查询时一般只需要查询 1 个 base deltas, 1 个 cumulative deltas 和少数 singleton deltas 即可。
注意,compaction 是在后台并发和异步执行的,此外由于 Mesa 的存储是按照 key 有序存储的,所以 deltas 的 merge 是线性时间的。
前缀索引
不同于传统的数据库设计,Doris 不支持在任意列上创建索引。Doris 这类 MPP 架构的 OLAP 数据库,通常都是通过提高并发,来处理大量数据的。
本质上,Doris 的数据存储在类似 SSTable(Sorted String Table)的数据结构中。该结构是一种有序的数据结构,可以按照指定的列进行排序存储。在这种数据结构上,以排序列作为条件进行查找,会非常的高效。
在 Aggregate、Uniq 和 Duplicate 三种数据模型中。底层的数据存储,是按照各自建表语句中,AGGREGATE KEY、UNIQ KEY 和 DUPLICATE KEY 中指定的列进行排序存储的。
而前缀索引,即在排序的基础上,实现的一种根据给定前缀列,快速查询数据的索引方式。
我们将一行数据的前 36 个字节 作为这行数据的前缀索引。当遇到 VARCHAR 类型时,前缀索引会直接截断。我们举例说明:
- 以下表结构的前缀索引为 user_id(8Byte) + age(8Bytes) + message(prefix 20 Bytes)。
ColumnName | Type |
---|---|
user_id | BIGINT |
age | INT |
message | VARCHAR(100) |
max_dwell_time | DATETIME |
min_dwell_time | DATETIME |
2. 以下表结构的前缀索引为 user_name(20 Bytes)。即使没有达到 36 个字节,因为遇到VARCHAR,所以直接截断,不再往后继续。 |
ColumnName | Type |
---|---|
user_name | VARCHAR(20) |
age | INT |
message | VARCHAR(100) |
max_dwell_time | DATETIME |
min_dwell_time | DATETIME |
当我们的查询条件,是前缀索引的前缀时,可以极大的加快查询速度。比如在第一个例子中,我们执行如下查询:
SELECT * FROM table WHERE user_id=1829239 and age=20;
该查询的效率会远高于如下查询:
SELECT * FROM table WHERE age=20;
所以在建表时,正确的选择列顺序,能够极大地提高查询效率。
ROLLUP 调整前缀索引
因为建表时已经指定了列顺序,所以一个表只有一种前缀索引。这对于使用其他不能命中前缀索引的列作为条件进行的查询来说,效率上可能无法满足需求。因此,我们可以通过创建 ROLLUP 来人为的调整列顺序。举例说明。
Base 表结构如下:
ColumnName | Type |
---|---|
user_id | BIGINT |
age | INT |
message | VARCHAR(100) |
max_dwell_time | DATETIME |
min_dwell_time | DATETIME |
我们可以在此基础上创建一个 ROLLUP 表:
ColumnName | Type |
---|---|
age | INT |
user_id | BIGINT |
message | VARCHAR(100) |
max_dwell_time | DATETIME |
min_dwell_time | DATETIME |
可以看到,ROLLUP 和 Base 表的列完全一样,只是将 user_id 和 age 的顺序调换了。那么当我们进行如下查询时:
SELECT * FROM table where age=20 and massage LIKE "%error%";
会优先选择 ROLLUP 表,因为 ROLLUP 的前缀索引匹配度更高。
聚合模型的局限性
这里我们针对 Aggregate 模型(包括 Uniq 模型),来介绍下聚合模型的局限性。
在聚合模型中,模型对外展现的,是最终聚合后的数据。也就是说,任何还未聚合的数据(比如说两个不同导入批次的数据),必须通过某种方式,以保证对外展示的一致性。我们举例说明。
假设表结构如下:
ColumnName | Type | AggregationType | Comment |
---|---|---|---|
user_id | LARGEINT | 用户 id | |
date | DATE | 数据灌入日期 | |
cost | BIGINT | SUM | 用户总消费 |
假设存储引擎中有如下两个已经导入完成的批次的数据:
batch 1
user_id | date | cost |
---|---|---|
10001 | 2017-11-20 | 50 |
10002 | 2017-11-21 | 39 |
batch 2
user_id | date | cost |
---|---|---|
10001 | 2017-11-20 | 1 |
10001 | 2017-11-21 | 5 |
10003 | 2017-11-22 | 22 |
可以看到,用户 10001 分属在两个导入批次中的数据还没有聚合。但是为了保证用户只能查询到如下最终聚合后的数据:
user_id | date | cost |
---|---|---|
10001 | 2017-11-20 | 51 |
10001 | 2017-11-21 | 5 |
10002 | 2017-11-21 | 39 |
10003 | 2017-11-22 | 22 |
我们在查询引擎中加入了聚合算子,来保证数据对外的一致性。
另外,在聚合列(Value)上,执行与聚合类型不一致的聚合类查询时,要注意语意。比如我们在如上示例中执行如下查询:
SELECT MIN(cost) FROM table;
得到的结果是 5,而不是 1。
同时,这种一致性保证,在某些查询中,会极大的降低查询效率。
我们以最基本的 count(*) 查询为例:
SELECT COUNT(*) FROM table;
在其他数据库中,这类查询都会很快的返回结果。因为在实现上,我们可以通过如“导入时对行进行计数,保存 count 的统计信息”,或者在查询时“仅扫描某一列数据,获得 count 值”的方式,只需很小的开销,即可获得查询结果。但是在 Doris 的聚合模型中,这种查询的开销非常大。
我们以刚才的数据为例:
batch 1
user_id | date | cost |
---|---|---|
10001 | 2017-11-20 | 50 |
10002 | 2017-11-21 | 39 |
batch 2
user_id | date | cost |
---|---|---|
10001 | 2017-11-20 | 1 |
10001 | 2017-11-21 | 5 |
10003 | 2017-11-22 | 22 |
因为最终的聚合结果为:
user_id | date | cost |
---|---|---|
10001 | 2017-11-20 | 51 |
10001 | 2017-11-21 | 5 |
10002 | 2017-11-21 | 39 |
10003 | 2017-11-22 | 22 |
所以,select count(*) from table; 的正确结果应该为 4。但如果我们只扫描 user_id 这一列,如果加上查询时聚合,最终得到的结果是 3(10001, 10002, 10003)。而如果不加查询时聚合,则得到的结果是 5(两批次一共 5 行数据)。可见这两个结果都是不对的。
为了得到正确的结果,我们必须同时读取 user_id 和 date 这两列的数据,再加上查询时聚合,才能返回 4 这个正确的结果。也就是说,在 count() 查询中,Doris 必须扫描所有的 AGGREGATE KEY 列(这里就是 user_id 和 date),并且聚合后,才能得到语意正确的结果。当聚合列非常多时,count() 查询需要扫描大量的数据。
因此,当业务上有频繁的 count() 查询时,我们建议用户通过增加一个**值衡为 1 的,聚合类型为 SUM 的列来模拟 count()**。如刚才的例子中的表结构,我们修改如下:
ColumnName | Type | AggreateType | Comment |
---|---|---|---|
user_id | BIGINT | 用户 id | |
date | DATE | 数据灌入日期 | |
cost | BIGINT | SUM | 用户总消费 |
count | BIGINT | SUM | 用于计算 count |
增加一个 count 列,并且导入数据中,该列值衡为 1。则 select count() from table; 的结果等价于 select sum(count) from table;。而后者的查询效率将远高于前者。不过这种方式也有使用限制,就是用户需要自行保证,不会重复导入 AGGREGATE KEY 列都相同的行。否则,select sum(count) from table; 只能表述原始导入的行数,而不是 select count() from table; 的语义。
另一种方式,就是 将如上的 count 列的聚合类型改为 REPLACE,且依然值衡为 1。那么 select sum(count) from table; 和 select count(*) from table; 的结果将是一致的。并且这种方式,没有导入重复行的限制。
Duplicate 模型
Duplicate 模型没有聚合模型的这个局限性。因为该模型不涉及聚合语意,在做 count(*) 查询时,任意选择一列查询,即可得到语意正确的结果。
数据模型的选择建议
因为数据模型在建表时就已经确定,且无法修改。所以,选择一个合适的数据模型非常重要。
- Aggregate 模型可以通过预聚合,极大地降低聚合查询时所需扫描的数据量和查询的计算量,非常适合有固定模式的报表类查询场景。但是该模型对 count(*) 查询很不友好。同时因为固定了 Value 列上的聚合方式,在进行其他类型的聚合查询时,需要考虑语意正确性。
- Uniq 模型针对需要唯一主键约束的场景,可以保证主键唯一性约束。但是无法利用 ROLLUP 等预聚合带来的查询优势(因为本质是 REPLACE,没有 SUM 这种聚合方式)。
- Duplicate 适合任意维度的 Ad-hoc 查询。虽然同样无法利用预聚合的特性,但是不受聚合模型的约束,可以发挥列存模型的优势(只读取相关列,而不需要读取所有 Key 列)
1.3Doris 存储模型
Doris 的存储模型主要整合了 Meda 的数据模型和 ORCFile / Parquet 的存储格式,编码和压缩。
Doris 存储相关的基本概念
Doris 元数据上的逻辑概念有 Table,Partition,Tablet,Replica。
Doris 的 Table 支持二级分区,可以先按照日期列进行一级分区,再按照指定列进行 Hash 分桶。
首先 1 个 Table 可以按照日期列分为多个 Partition, 每个 Partition 可以包含多个 Tablet,每个 Table 的数据被水平划分为多个 Tablet,
每个 Tablet 包含若干数据行,Tablet 是数据移动、复制等操作的最小物理存储单元,各个 Tablet 之间的数据没有交集,并且在物理上是独立存储的。
Partition 可以视为逻辑上最小的管理单元,数据的导入与删除,仅能针对一个 Partition 进行。
1 个 Table 的 Tablet 数量= Partition num * Bucket num。
Tablet 会按照一定大小(256M)拆分为多个 segment 文件, segment 是列存的,但是会按行(1024 行,可配置)拆分为多个 rowblock。
Doris 的数据文件
Doris 的数据文件如下图所示:
Doris 数据文件 Stream 的例子:
前缀索引
本质上,Doris 的数据存储是类似 SSTable(Sorted String Table)的数据结构。该结构是一种有序的数据结构,可以按照指定的列进行排序存储。
在这种数据结构上,以排序列作为条件进行查找,会非常的高效。而前缀索引,即在排序的基础上,实现的一种根据给定前缀列,快速查询数据的索引方式。
前缀索引文件的格式如下图所示,索引的 Key 是每个 rowblock 第一行记录的 Sort Key 的前 36 个字节,Value 是 rowblock 在 segment 文件的偏移量。
有了前缀索引后,我们查询特定 key 的过程就是两次二分查找:
- 先加载 index 文件,二分查找 index 文件获取包含特定 key 的 row blocks 的 offest,然后从 data files 中获取指定的 row blocks;
- 在 row blocks 中二分查询特定的 key
Index 文件:
Min,Max 索引和 Bloomfilter
在利用前缀索引过滤 block 之前, Doris 也会根据 Min,Max 索引和 bloomfilter(可选)过滤掉不匹配的 block。
编码和压缩
编码
Doris 中整形的编码方式:(以下几种编码方式的细节具体可以参考 HIve ORC)
- SHORT_REPEAT
- DIRECT
- PATCHED_BASE
- DELTA
具体选择哪种编码方式会根据数据特点进行选择。
String 会使用字典编码 和 DIRECT 编码,使用哪种方式取决于列的基数。
压缩
索引文件和 BF 不会压缩。
数据文件会使用 LZO 或者 LZ4 算法压缩。
Doris 针对网络传输,硬盘数据,存储有不同的压缩算法:
- 网络传输时会使用 LZO1X 算法,该算法压缩率低,CPU 开销低
- 硬盘数据会使用 LZO1C_99 算法,该算法压缩率高,CPU 开销大
- 储存会使用 LZ4 算法,压缩率低,CPU 开销低