上一篇介绍了秒杀系统整体架构可以概括为“稳、准、快”几个关键字,其中讲解了通过动静分离来实现高性能。这一篇会讲解秒杀系统相对于其他系统很不同的特点,就是“热点”问题和瞬时请求量巨大问题。

热点问题

热点带来的影响

首先,热点请求会大量占用服务器处理资源,虽然这个热点可能只占请求总量的亿分之一,然而却可能抢占 90% 的服务器资源,如果这个热点请求还是没有价值的无效请求,那么对系统资源来说完全是浪费。

其次,即使这些热点是有效的请求,我们也要识别出来做针对性的优化,从而用更低的代价来支撑这些热点请求。

“热点”包含哪些

热点分为热点操作热点数据。所谓“热点操作”,例如大量的刷新页面、大量的添加购物车、双十一零点大量的下单等都属于此类操作。对系统来说,这些操作可以抽象为“读请求”和“写请求”,这两种热点请求的处理方式大相径庭,读请求的优化空间要大一些,而写请求的瓶颈一般都在存储层,优化的思路需要根据 CAP 理论做平衡。

而“热点数据”比较好理解,那就是用户的热点请求对应的数据。而热点数据又分为“静态热点数据”和“动态热点数据”。

所谓“静态热点数据”,就是能够提前预测的热点数据。例如,我们可以通过卖家报名的方式提前筛选出来,通过报名系统对这些热点商品进行打标。另外,我们还可以通过大数据分析来提前发现热点商品,比如我们分析历史成交记录、用户的购物车记录,来发现哪些商品可能更热门、更好卖,这些都是可以提前分析出来的热点。

所谓“动态热点数据”,就是不能被提前预测到的,系统在运行过程中临时产生的热点。例如,卖家在抖音上做了广告,然后商品一下就火了,导致它在短时间内被大量购买。

由于热点操作是用户的行为,我们不好改变,但能做一些限制和保护,所以本文我主要针对热点数据来介绍如何进行优化。

发现热点数据

我们从发现静态热点和发现动态热点两个方面来看一下。

发现静态热点数据

如前面讲的,静态热点数据可以通过商业手段,例如强制让卖家通过报名参加的方式提前把热点商品筛选出来,实现方式是通过一个运营系统,把参加活动的商品数据进行打标,然后通过一个后台系统对这些热点商品进行预处理,如提前进行缓存。但是这种通过报名提前筛选的方式也会带来新的问题,即增加卖家的使用成本,而且实时性较差,也不太灵活。

不过,除了提前报名筛选这种方式,你还可以通过技术手段提前预测,例如对买家每天访问的商品进行大数据计算,然后统计出 TOP N 的商品,我们可以认为这些 TOP N 的商品就是热点商品。

发现动态热点数据

我们可以通过卖家报名或者大数据预测这些手段来提前预测静态热点数据,但这其中有一个痛点,就是实时性较差,如果我们的系统能在秒级内自动发现热点商品那就完美了。

能够动态地实时发现热点不仅对秒杀商品,对其他热卖商品也同样有价值,所以我们需要想办法实现热点的动态发现功能。

这里我给出一个动态热点发现系统的具体实现。

  1. 构建一个异步的系统,它可以收集交易链路上各个环节中的中间件产品的热点 Key,如 Nginx、缓存、RPC 服务框架等这些中间件(一些中间件产品本身已经有热点统计模块)。
  2. 建立一个热点上报和可以按照需求订阅的热点服务的下发规范,主要目的是通过交易链路上各个系统(包括详情、购物车、交易、优惠、库存、物流等)访问的时间差,把上游已经发现的热点透传给下游系统,提前做好保护。比如,对于大促高峰期,详情系统是最早知道的,在统一接入层上 Nginx 模块统计的热点 URL。
  3. 将上游系统收集的热点数据发送到热点服务台,然后下游系统(如交易系统)就会知道哪些商品会被频繁调用,然后做热点保护。

这里我给出了一个图,其中用户访问商品时经过的路径有很多,我们主要是依赖前面的导购页面(包括首页、搜索页面、商品详情、购物车等)提前识别哪些商品的访问量高,通过这些系统中的中间件来收集热点数据,并记录到日志中。

一个动态热点发现系统我们通过部署在每台机器上的 Agent 把日志汇总到聚合和分析集群中,然后把符合一定规则的热点数据,通过订阅分发系统再推送到相应的系统中。你可以是把热点数据填充到 Cache 中,或者直接推送到应用服务器的内存中,还可以对这些数据进行拦截,总之下游系统可以订阅这些数据,然后根据自己的需求决定如何处理这些数据。

打造热点发现系统时,我根据以往经验总结了几点注意事项。

  1. 这个热点服务后台抓取热点数据日志最好采用异步方式,因为“异步”一方面便于保证通用性,另一方面又不影响业务系统和中间件产品的主流程。
  2. 热点服务发现和中间件自身的热点保护模块并存,每个中间件和应用还需要保护自己。热点服务台提供热点数据的收集和订阅服务,便于把各个系统的热点数据透明出来。
  3. 热点发现要做到接近实时(3s 内完成热点数据的发现),因为只有做到接近实时,动态发现才有意义,才能实时地对下游系统提供保护。

处理热点数据

处理热点数据通常有几种思路:一是优化,二是限制,三是隔离

先来说说优化。优化热点数据最有效的办法就是缓存热点数据,如果热点数据做了动静分离,那么可以长期缓存静态数据。但是,缓存热点数据更多的是“临时”缓存,即不管是静态数据还是动态数据,都用一个队列短暂地缓存数秒钟,由于队列长度有限,可以采用 LRU 淘汰算法替换。

再来说说限制。限制更多的是一种保护机制,限制的办法也有很多,例如对被访问商品的 ID 做一致性 Hash,然后根据 Hash 做分桶,每个分桶设置一个处理队列,这样可以把热点商品限制在一个请求队列里,防止因某些热点商品占用太多的服务器资源,而使其他请求始终得不到服务器的处理资源。

最后介绍一下隔离。秒杀系统设计的第一个原则就是将这种热点数据隔离出来,不要让 1% 的请求影响到另外的 99%,隔离出来后也更方便对这 1% 的请求做针对性的优化。

具体到“秒杀”业务,我们可以在以下几个层次实现隔离。

  1. 业务隔离。把秒杀做成一种营销活动,卖家要参加秒杀这种营销活动需要单独报名,从技术上来说,卖家报名后对我们来说就有了已知热点,因此可以提前做好预热。
  2. 系统隔离。系统隔离更多的是运行时的隔离,可以通过分组部署的方式和另外 99% 分开。秒杀可以申请单独的域名,目的也是让请求落到不同的集群中。
  3. 数据隔离。秒杀所调用的数据大部分都是热点数据,比如会启用单独的 Cache 集群或者 MySQL 数据库来放热点数据,目的也是不想 0.01% 的数据有机会影响 99.99% 数据。

当然了,实现隔离有很多种办法。比如,你可以按照用户来区分,给不同的用户分配不同的 Cookie,在接入层,路由到不同的服务接口中;再比如,你还可以在接入层针对 URL 中的不同 Path 来设置限流策略。服务层调用不同的服务接口,以及数据层通过给数据打标来区分等等这些措施,其目的都是把已经识别出来的热点请求和普通的请求区分开。

瞬时请求量巨大问题

如果你看过秒杀系统的流量监控图的话,你会发现它是一条直线,就在秒杀开始那一秒是一条很直很直的线,这是因为秒杀请求在时间上高度集中于某一特定的时间点。这样一来,就会导致一个特别高的流量峰值,它对资源的消耗是瞬时的。

但是对秒杀这个场景来说,最终能够抢到商品的人数是固定的,也就是说 100 人和 10000 人发起请求的结果都是一样的,并发度越高,无效请求也越多,但对系统压力却是巨大的。所以我们需要设计一些规则,让并发的请求更多地延缓,而且我们甚至可以过滤掉一些无效请求。流量削峰的一些操作思路:排队、答题、分层过滤。这几种方式都是无损(即不会损失用户的发出请求)的实现方案。

排队

要对流量进行削峰,最容易想到的解决方案就是用消息队列来缓冲瞬时流量,把同步的直接调用转换成异步的间接推送,中间通过一个队列在一端承接瞬时的流量洪峰,在另一端平滑地将消息推送出去。在这里,消息队列就像“水库”一样, 拦蓄上游的洪水,削减进入下游河道的洪峰流量,从而达到减免洪水灾害的目的。

如下图所示:

用消息队列来缓冲瞬时流量但是,如果流量峰值持续一段时间达到了消息队列的处理上限,例如本机的消息积压达到了存储空间的上限,消息队列同样也会被压垮,这样虽然保护了下游的系统,但是和直接把请求丢弃也没多大的区别。就像遇到洪水爆发时,即使是有水库恐怕也无济于事。

除了消息队列,类似的排队方式还有很多,例如:

  1. 利用线程池加锁等待也是一种常用的排队方式;
  2. 先进先出、先进后出等常用的内存排队算法的实现方式;
  3. 把请求序列化到文件中,然后再顺序地读文件(例如基于 MySQL binlog 的同步机制)来恢复请求等方式。

可以看到,这些方式都有一个共同特征,就是把“一步的操作”变成“两步的操作”,其中增加的一步操作用来起到缓冲的作用。可能会有人觉得不合理,这增加了一个中间缓冲步骤,但如果不增加这个,那么在一些场景下系统很可能会直接崩溃,所以最终还是需要你做出妥协和平衡。

答题

答题主要是为了增加购买的复杂度,从而达到两个目的。

第一个目的是防止部分买家使用秒杀器在参加秒杀时作弊。

第二个目的其实就是延缓请求,起到对请求流量进行削峰的作用,从而让系统能够更好地支持瞬时的流量高峰。这个重要的功能就是把峰值的下单请求拉长,从以前的 1s 之内延长到 2s~10s。这样一来,请求峰值基于时间分片了。这个时间的分片对服务端处理并发非常重要,会大大减轻压力。而且,由于请求具有先后顺序,靠后的请求到来时自然也就没有库存了,因此根本到不了最后的下单步骤,所以真正的并发写就非常有限了。

下面重点说一下秒杀答题的设计思路。如下图所示:

整个秒杀答题的逻辑主要分为 3 部分。

  1. 题库生成模块,这个部分主要就是生成一个个问题和答案,其实题目和答案本身并不需要很复杂,重要的是能够防止由机器来算出结果,即防止秒杀器来答题。
  2. 题库的推送模块,用于在秒杀答题前,把题目提前推送给详情系统和交易系统。题库的推送主要是为了保证每次用户请求的题目是唯一的,目的也是防止答题作弊。
  3. 题目的图片生成模块,用于把题目生成为图片格式,并且在图片里增加一些干扰因素。这也同样是为防止机器直接来答题,它要求只有人才能理解题目本身的含义。这里还要注意一点,由于答题时网络比较拥挤,我们应该把题目的图片提前推送到 CDN 上并且要进行预热,不然的话当用户真正请求题目时,图片可能加载比较慢,从而影响答题的体验。

其实真正答题的逻辑比较简单,很好理解:当用户提交的答案和题目对应的答案做比较,如果通过了就继续进行下一步的下单逻辑,否则就失败。我们可以把问题和答案用下面这样的 key 来进行 MD5 加密:

  • 问题 key:userId+itemId+question_Id+time+PK
  • 答案 key:userId+itemId+answer+PK

验证的逻辑如下图所示:

答题的验证逻辑注意,这里面的验证逻辑,除了验证问题的答案以外,还包括用户本身身份的验证,例如是否已经登录、用户的 Cookie 是否完整、用户是否重复频繁提交等。

除了做正确性验证,我们还可以对提交答案的时间做些限制,例如从开始答题到接受答案要超过 1s,因为小于 1s 是人为操作的可能性很小,这样也能防止机器答题的情况。

分层过滤

前面介绍的排队和答题要么是少发请求,要么对发出来的请求进行缓冲,而针对秒杀场景还有一种方法,就是对请求进行分层过滤,从而过滤掉一些无效的请求。分层过滤其实就是采用“漏斗”式设计来处理请求的,如下图所示。

分层过滤假如请求分别经过 CDN、前台读系统(如商品详情系统)、后台系统(如交易系统)和数据库这几层,那么:

  • 大部分数据和流量在用户浏览器或者 CDN 上获取,这一层可以拦截大部分数据的读取;
  • 经过第二层(即前台系统)时数据(包括强一致性的数据)尽量得走 Cache,过滤一些无效的请求;
  • 再到第三层后台系统,主要做数据的二次检验,对系统做好保护和限流,这样数据量和请求就进一步减少;
  • 最后在数据层完成数据的强一致性校验。

这样就像漏斗一样,尽量把数据量和请求量一层一层地过滤和减少了。

分层过滤的核心思想是:在不同的层次尽可能地过滤掉无效请求,让“漏斗”最末端的才是有效请求。而要达到这种效果,我们就必须对数据做分层的校验。

分层校验的基本原则是:

  1. 将动态请求的读数据缓存(Cache)在 Web 端,过滤掉无效的数据读;
  2. 对读数据不做强一致性校验,减少因为一致性校验产生瓶颈的问题;
  3. 对写数据进行基于时间的合理分片,过滤掉过期的失效请求;
  4. 对写请求做限流保护,将超出系统承载能力的请求过滤掉;
  5. 对写数据进行强一致性校验,只保留最后有效的数据。

分层校验的目的是:在读系统中,尽量减少由于一致性校验带来的系统瓶颈,但是尽量将不影响性能的检查条件提前,如用户是否具有秒杀资格、商品状态是否正常、用户答题是否正确、秒杀是否已经结束、是否非法请求、营销等价物是否充足等;在写数据系统中,主要对写的数据(如“库存”)做一致性检查,最后在数据库层保证数据的最终准确性(如“库存”不能减为负数)。